Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.214
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2309621121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588415

RESUMO

Chromosomal instability (CIN) is the persistent reshuffling of cancer karyotypes via chromosome mis-segregation during cell division. In cancer, CIN exists at varying levels that have differential effects on tumor progression. However, mis-segregation rates remain challenging to assess in human cancer despite an array of available measures. We evaluated measures of CIN by comparing quantitative methods using specific, inducible phenotypic CIN models of chromosome bridges, pseudobipolar spindles, multipolar spindles, and polar chromosomes. For each, we measured CIN fixed and timelapse fluorescence microscopy, chromosome spreads, six-centromere FISH, bulk transcriptomics, and single-cell DNA sequencing (scDNAseq). As expected, microscopy of tumor cells in live and fixed samples significantly correlated (R = 0.72; P < 0.001) and sensitively detect CIN. Cytogenetics approaches include chromosome spreads and 6-centromere FISH, which also significantly correlate (R = 0.76; P < 0.001) but had limited sensitivity for lower rates of CIN. Bulk genomic DNA signatures and bulk transcriptomic scores, CIN70 and HET70, did not detect CIN. By contrast, scDNAseq detects CIN with high sensitivity, and significantly correlates with imaging methods (R = 0.82; P < 0.001). In summary, single-cell methods such as imaging, cytogenetics, and scDNAseq can measure CIN, with the latter being the most comprehensive method accessible to clinical samples. To facilitate the comparison of CIN rates between phenotypes and methods, we propose a standardized unit of CIN: Mis-segregations per Diploid Division. This systematic analysis of common CIN measures highlights the superiority of single-cell methods and provides guidance for measuring CIN in the clinical setting.


Assuntos
Instabilidade Cromossômica , Neoplasias , Humanos , Linhagem Celular Tumoral , Instabilidade Cromossômica/genética , Centrômero , Cariotipagem , Perfilação da Expressão Gênica , Segregação de Cromossomos , Aneuploidia
2.
Cancer Immunol Immunother ; 73(5): 95, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607586

RESUMO

BACKGROUND: Homologous recombination deficiency (HRD), though largely uncharacterized in clear cell renal cell carcinoma (ccRCC), was found associated with RAD51 loss of expression. PBRM1 is the second most common mutated genes in ccRCC. Here, we introduce a HRD function-based PBRM1-RAD51 ccRCC classification endowed with diverse immune checkpoint blockade (ICB) responses. METHODS: Totally 1542 patients from four independent cohorts were enrolled, including our localized Zhongshan hospital (ZSHS) cohort and Zhongshan hospital metastatic RCC (ZSHS-mRCC) cohort, The Cancer Genome Atlas (TCGA) cohort and CheckMate cohort. The genomic profile and immune microenvironment were depicted by genomic, transcriptome data and immunohistochemistry. RESULTS: We observed that PBRM1-loss ccRCC harbored enriched HRD-associated mutational signature 3 and loss of RAD51. Dual-loss of PBRM1 and RAD51 identified patients hyper-sensitive to immunotherapy. This dual-loss subtype was featured by M1 macrophage infiltration. Dual-loss was, albeit homologous recombination defective, with high chromosomal stability. CONCLUSIONS: PBRM1 and RAD51 dual-loss ccRCC indicates superior responses to immunotherapy. Dual-loss ccRCC harbors an immune-desert microenvironment but enriched with M1 macrophages. Dual-loss ccRCC is susceptible to defective homologous recombination but possesses high chromosomal stability.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Imunoterapia , Neoplasias Renais/genética , Neoplasias Renais/terapia , Instabilidade Cromossômica , Microambiente Tumoral , Rad51 Recombinase , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
3.
Front Cell Infect Microbiol ; 14: 1374659, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524184

RESUMO

Toxoplasma gondii is a globally occurring apicomplexan parasite that infects humans and animals. Globally, different typical and atypical haplotypes of T. gondii induce varying pathologies in hosts. As an obligate intracellular protozoon, T. gondii was shown to interfere with host cell cycle progression, leading to mitotic spindle alteration, chromosome segregation errors and cytokinesis failure which all may reflect chromosomal instability. Referring to strain-dependent virulence, we here studied the potential of different T. gondii strains (RH, Me49 and NED) to drive DNA damage in primary endothelial host cells. Utilizing microscopic analyses, comet assays and γ-H2AX quantification, we demonstrated a strain-dependent induction of binucleated host cells, DNA damage and DNA double strand breaks, respectively, in T. gondii-infected cells with the RH strain driving the most prominent effects. Interestingly, only the NED strain significantly triggered micronuclei formation in T. gondii-infected cells. Focusing on the RH strain, we furthermore demonstrated that T. gondii-infected primary host cells showed a DNA damage response by activating the ATM-dependent homologous recombination (HR) pathway. In contrast, key molecules of the nonhomologous DNA end joining (NHEJ) pathway were either not affected or downregulated in RH-infected host cells, suggesting that this pathway is not activated by infection. In conclusion, current finding suggests that T. gondii infection affects the host cell genome integrity in a strain-dependent manner by causing DNA damage and chromosomal instability.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Animais , Toxoplasmose/parasitologia , DNA , Dano ao DNA , Instabilidade Cromossômica , Recombinação Homóloga , Proteínas Mutadas de Ataxia Telangiectasia/genética
4.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474184

RESUMO

In autosomal dominant polycystic kidney disease (ADPKD) with germline mutations in a PKD1 or PKD2 gene, innumerable cysts develop from tubules, and renal function deteriorates. Second-hit somatic mutations and renal tubular epithelial (RTE) cell death are crucial features of cyst initiation and disease progression. Here, we use established RTE lines and primary ADPKD cells with disease-associated PKD1 mutations to investigate genomic instability and DNA damage responses. We found that ADPKD cells suffer severe chromosome breakage, aneuploidy, heightened susceptibility to DNA damage, and delayed checkpoint activation. Immunohistochemical analyses of human kidneys corroborated observations in cultured cells. DNA damage sensors (ATM/ATR) were activated but did not localize at nuclear sites of damaged DNA and did not properly activate downstream transducers (CHK1/CHK2). ADPKD cells also had the ability to transform, as they achieved high saturation density and formed colonies in soft agar. Our studies indicate that defective DNA damage repair pathways and the somatic mutagenesis they cause contribute fundamentally to the pathogenesis of ADPKD. Acquired mutations may alternatively confer proliferative advantages to the clonally expanded cell populations or lead to apoptosis. Further understanding of the molecular details of aberrant DNA damage responses in ADPKD is ongoing and holds promise for targeted therapies.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/metabolismo , Mutação , Rim/metabolismo , Cistos/metabolismo , Instabilidade Cromossômica
5.
Epigenetics Chromatin ; 17(1): 6, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481282

RESUMO

BACKGROUND: Prostate adenocarcinoma (PRAD) is the second leading cause of cancer-related deaths in men. High variability in DNA methylation and a high rate of large genomic rearrangements are often observed in PRAD. RESULTS: To investigate the reasons for such high variance, we integrated DNA methylation, RNA-seq, and copy number alterations datasets from The Cancer Genome Atlas (TCGA), focusing on PRAD, and employed weighted gene co-expression network analysis (WGCNA). Our results show that only single cluster of co-expressed genes is associated with genomic and epigenomic instability. Within this cluster, TP63 and TRIM29 are key transcription regulators and are downregulated in PRAD. We discovered that TP63 regulates the level of enhancer methylation in prostate basal epithelial cells. TRIM29 forms a complex with TP63 and together regulates the expression of genes specific to the prostate basal epithelium. In addition, TRIM29 binds DNA repair proteins and prevents the formation of the TMPRSS2:ERG gene fusion typically observed in PRAD. CONCLUSION: Our study demonstrates that TRIM29 and TP63 are important regulators in maintaining the identity of the basal epithelium under physiological conditions. Furthermore, we uncover the role of TRIM29 in PRAD development.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Metilação de DNA , Sequências Reguladoras de Ácido Nucleico , Instabilidade Cromossômica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
6.
Signal Transduct Target Ther ; 9(1): 75, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553459

RESUMO

Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.


Assuntos
Instabilidade Cromossômica , Neoplasias , Humanos , Instabilidade Cromossômica/genética , Cinetocoros , Linhagem Celular Tumoral , Centrossomo , Microtúbulos , Neoplasias/genética
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447882

RESUMO

The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.


Assuntos
Aurora Quinase A , Proteínas de Ciclo Celular , Humanos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Supressora de Tumor p53/genética , Segregação de Cromossomos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Instabilidade Genômica , Instabilidade Cromossômica/genética , Cromossomos/metabolismo
8.
J Pathol Clin Res ; 10(2): e12368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454538

RESUMO

We performed comprehensive analyses of somatic copy number alterations (SCNAs) and gene expression profiles of gastric intramucosal neoplasia (IMN) using array-based methods in 97 intestinal-type IMNs, including 39 low-grade dysplasias (LGDs), 37 high-grade dysplasias (HGDs), and 26 intramucosal carcinomas (IMCs) with stromal invasion of the lamina propria to identify the molecular mechanism of IMN. In addition, we examined gene mutations using gene panel analyses. We used cluster analyses for exclusion of arbitrariness to identify SCNA patterns and expression profiles. IMNs were classified into two distinct subgroups (subgroups 1 and 2) based on SCNA patterns. Subgroup 1 showed a genomic stable pattern due to the low frequency of SCNAs, whereas subgroup 2 exhibited a chromosomal instability pattern due to the high frequencies of SCNAs and TP53 mutations. Interestingly, although the frequencies of LGD and HGD were significantly higher in subgroup 1 than in subgroup 2, IMC was commonly found in both types. Although the expression profiles of specific mRNAs could be used to categorise subgroups 1 and 2, no clinicopathological findings correlated with either subgroup. We examined signalling pathways specific to subgroups 1 and 2 to identify the association of each subgroup with signalling pathways based on gene ontology tree visualisation: subgroups 1 and 2 were associated with haem metabolism and chromosomal instability, respectively. These findings reveal a comprehensive genomic landscape that highlights the molecular complexity of IMNs and provide a road map to facilitate our understanding of gastric IMNs.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias Gástricas , Humanos , Variações do Número de Cópias de DNA/genética , Estudo de Associação Genômica Ampla , Mutação , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Instabilidade Cromossômica
9.
Cancer Med ; 13(4): e6962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38457207

RESUMO

BACKGROUND: Though programmed cell death-ligand 1 (PD-L1) has been used in predicting the efficacy of immune checkpoint blockade (ICB), it is insufficient as a single biomarker. As a key effector of an intrinsically mutagenic microhomology-mediated end joining (MMEJ) pathway, DNA polymerase theta (POLQ) was overexpressed in various malignancies, whose expression might have an influence on genomic stability, therefore altering the sensitivity to chemotherapy and immunotherapy. METHODS: A total of 1304 patients with muscle-invasive bladder cancer (MIBC) from six independent cohorts were included in this study. The Zhongshan Hospital (ZSHS) cohort (n = 134), The Cancer Genome Atlas (TCGA) cohort (n = 391), and the Neo-cohort (n = 148) were included for the investigation of chemotherapeutic response. The IMvigor210 cohort (n = 234) and the UNC-108 cohort (n = 89) were used for the assessment of immunotherapeutic response. In addition, the relationship between POLQ and the immune microenvironment was assessed, and GSE32894 (n = 308) was used only for the evaluation of the immune microenvironment. RESULTS: We identified POLQhigh PD-L1high patients could benefit more from immunotherapy and platinum-based chemotherapy. Further analysis revealed that high POLQ expression was linked to chromosome instability and higher tumor mutational burden (TMB), which might elicit the production of neoantigens. Further, high POLQ expression was associated with an active tumor immune microenvironment with abundant infiltration of immune effector cells and molecules. CONCLUSIONS: The study demonstrated that high POLQ expression was correlated with chromosome instability and antitumor immune microenvironment in MIBC, and the combination of POLQ and PD-L1 could be used as a superior companion biomarker for predicting the efficacy of immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias da Bexiga Urinária , Humanos , Antígeno B7-H1/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/metabolismo , Biomarcadores , Imunoterapia , Instabilidade Cromossômica , Músculos/metabolismo , Músculos/patologia , Microambiente Tumoral
10.
J Cell Mol Med ; 28(7): e18182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498903

RESUMO

Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Camundongos , Humanos , Carcinoma Anaplásico da Tireoide/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Camundongos Nus , Peixe-Zebra/metabolismo , Instabilidade Cromossômica , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Proteínas Oncogênicas/genética , Cinesinas/genética
11.
Chromosome Res ; 32(1): 2, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367036

RESUMO

Quantitative measures of CIN are crucial to our understanding of its role in cancer. Technological advances have changed the way CIN is quantified, offering increased accuracy and insight. Here, we review measures of CIN through its rise as a field, discuss considerations for its measurement, and look forward to future quantification of CIN.


Assuntos
Aneuploidia , Neoplasias , Humanos , Instabilidade Cromossômica , Neoplasias/genética
12.
13.
Cell Rep ; 43(2): 113735, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38310513

RESUMO

More than half of all patients with cancer receive radiation therapy, but resistance is commonly observed. Currently, it is unknown whether resistance to radiation therapy is acquired or inherently present. Here, we employed organoids derived from rectal cancer and single-cell whole-genome sequencing to investigate the long-term evolution of subclones in response to radiation. Comparing single-cell whole-genome karyotypes between in-vitro-unirradiated and -irradiated organoids revealed three patterns of subclonal evolution: (1) subclonal persistence, (2) subclonal extinction, and (3) subclonal expansion. Organoids in which subclonal shifts occurred (i.e., expansion or extinction) became more resistant to radiation. Although radioresistant subclones did not share recurrent copy-number alterations that could explain their radioresistance, resistance was associated with reduced chromosomal instability, an association that was also observed in 529 human cancer cell lines. These data suggest that resistance to radiation is inherently present and associated with reduced chromosomal instability.


Assuntos
Neoplasias Retais , Humanos , Neoplasias Retais/genética , Neoplasias Retais/radioterapia , Linhagem Celular , Instabilidade Cromossômica , Cariótipo , Organoides
14.
J Clin Invest ; 134(8)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386414

RESUMO

Chromosomal instability is a prominent biological feature of myelodysplastic syndromes (MDS), with over 50% of patients with MDS harboring chromosomal abnormalities or a complex karyotype (CK). Despite this observation, the mechanisms underlying mitotic and chromosomal defects in MDS remain elusive. In this study, we identified ectopic expression of the transcription factor ONECUT3, which is associated with CKs and poorer survival outcomes in MDS. ONECUT3-overexpressing cell models exhibited enrichment of several notable pathways, including signatures of sister chromosome exchange separation and mitotic nuclear division with the upregulation of INCENP and CDCA8 genes. Notably, dysregulation of chromosome passenger complex (CPC) accumulation, besides the cell equator and midbody, during mitotic phases consequently caused cytokinesis failure and defective chromosome segregation. Mechanistically, the homeobox (HOX) domain of ONECUT3, serving as the DNA binding domain, occupied the unique genomic regions of INCENP and CDCA8 and transcriptionally activated these 2 genes. We identified a lead compound, C5484617, that functionally targeted the HOX domain of ONECUT3, inhibiting its transcriptional activity on downstream genes, and synergistically resensitized MDS cells to hypomethylating agents. This study revealed that ONECUT3 promoted chromosomal instability by transcriptional activation of INCENP and CDCA8, suggesting potential prognostic and therapeutic roles for targeting high-risk MDS patients with a CK.


Assuntos
Síndromes Mielodisplásicas , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Expressão Ectópica do Gene , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Instabilidade Cromossômica , Cariótipo
15.
Trends Pharmacol Sci ; 45(3): 210-224, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38355324

RESUMO

Cancer development and therapy resistance are driven by chromosomal instability (CIN), which causes chromosome gains and losses (i.e., aneuploidy) and structural chromosomal alterations. Technical limitations and knowledge gaps have delayed therapeutic targeting of CIN and aneuploidy in cancers. However, our toolbox for creating and studying aneuploidy in cell models has greatly expanded recently. Moreover, accumulating evidence suggests that seven conventional antimitotic chemotherapeutic drugs achieve clinical response by inducing CIN instead of mitotic arrest, although additional anticancer activities may also contribute in vivo. In this review, we discuss these recent developments. We also highlight new discoveries, which together show that 25 chromosome arm aneuploidies (CAAs) may be targetable by 36 drugs across 14 types of cancer. Collectively, these advances offer many new opportunities to improve cancer treatment.


Assuntos
Aneuploidia , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Instabilidade Cromossômica
16.
Analyst ; 149(7): 1988-1997, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38420857

RESUMO

Chromosomal instability (CIN) is a source of genetic variation and is highly linked to the malignance of cancer. Determining the degree of CIN is necessary for understanding the role that it plays in tumor development. There is currently a lack of research on high-resolution characterization of CIN and the relationship between CIN and cell mechanics. Here, a method to determine CIN of breast cancer cells by high resolution imaging with atomic force microscopy (AFM) is explored. The numerical and structural changes of chromosomes in human breast cells (MCF-10A), moderately malignant breast cells (MCF-7) and highly malignant breast cells (MDA-MB-231) were observed and analyzed by AFM. Meanwhile, the nuclei, cytoskeleton and cell mechanics of the three kinds of cells were also investigated. The results showed the differences in CIN between the benign and cancer cells. Also, the degree of structural CIN increased with enhanced malignancy of cancer cells. This was also demonstrated by calculating the probability of micronucleus formation in these three kinds of cells. Meanwhile, we found that the area of the nucleus was related to the number of chromosomes in the nucleus. In addition, reduced or even aggregated actin fibers led to decreased elasticities in MCF-7 and MDA-MB-231 cells. It was found that the rearrangement of actin fibers would affect the nucleus, and then lead to wrong mitosis and CIN. Using AFM to detect chromosomal changes in cells with different malignancy degrees provides a new detection method for the study of cell carcinogenesis with a perspective for targeted therapy of cancer.


Assuntos
Actinas , Neoplasias da Mama , Humanos , Feminino , Microscopia de Força Atômica/métodos , Neoplasias da Mama/genética , Instabilidade Cromossômica , Mama
18.
Exp Cell Res ; 436(1): 113975, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367657

RESUMO

Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.


Assuntos
Facies , Linfedema , Microcefalia , Doenças Retinianas , Displasia Retiniana , Animais , Pontos de Checagem do Ciclo Celular/genética , Instabilidade Cromossômica , Deficiências do Desenvolvimento , Cinesinas/genética , Cinesinas/metabolismo , Microcefalia/genética , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
19.
Food Chem Toxicol ; 185: 114486, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301995

RESUMO

Ochratoxin A (OTA) is a renal carcinogen in rats, and repeated administration induces karyomegaly in proximal tubular epithelial cells (PTECs) of the outer stripe of the outer medulla (OSOM) before inducing proliferative lesions. To investigate whether OTA induces micronuclei (MN) in PTECs, we performed an in vitro MN assay using rat renal NRK-52E PTECs after treatment for ≤21 days, and an in vivo OSOM MN assay in rats treated with OTA, other renal carcinogens, or non-carcinogenic renal toxicants for 4 or 13 weeks. The in vitro assay revealed an increased frequency of micronucleated cells from the acceptable dose level for cell viability, even after 21 days of treatment. The in vivo assay also revealed a dose- and treatment period-dependent increase in PTECs with γ-H2AX+ MN. OTA-specific gene expression profiling by OSOM RNA sequencing after week 13 revealed the altered expression of genes related to microtubule-kinetochore binding, the kinesin superfamily, centriole assembly, DNA damage repair, and cell cycle regulation. MN formation was also observed with other renal carcinogens that induce karyomegaly similarly to OTA. These results imply that γ-H2AX+ MN formation by OTA treatment is related to the induction of chromosomal instability accompanying karyomegaly formation before proliferative lesions form, providing a new insight into the carcinogenic mechanism that may be relevant to humans.


Assuntos
Ocratoxinas , Humanos , Ratos , Animais , Ocratoxinas/toxicidade , Carcinógenos , Células Epiteliais , Instabilidade Cromossômica
20.
EMBO Mol Med ; 16(1): 64-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177531

RESUMO

Chromosomal instability (CIN) lies at the core of cancer development leading to aneuploidy, chromosomal copy-number heterogeneity (chr-CNH) and ultimately, unfavorable clinical outcomes. Despite its ubiquity in cancer, the presence of CIN in childhood B-cell acute lymphoblastic leukemia (cB-ALL), the most frequent pediatric cancer showing high frequencies of aneuploidy, remains unknown. Here, we elucidate the presence of CIN in aneuploid cB-ALL subtypes using single-cell whole-genome sequencing of primary cB-ALL samples and by generating and functionally characterizing patient-derived xenograft models (cB-ALL-PDX). We report higher rates of CIN across aneuploid than in euploid cB-ALL that strongly correlate with intraclonal chr-CNH and overall survival in mice. This association was further supported by in silico mathematical modeling. Moreover, mass-spectrometry analyses of cB-ALL-PDX revealed a "CIN signature" enriched in mitotic-spindle regulatory pathways, which was confirmed by RNA-sequencing of a large cohort of cB-ALL samples. The link between the presence of CIN in aneuploid cB-ALL and disease progression opens new possibilities for patient stratification and offers a promising new avenue as a therapeutic target in cB-ALL treatment.


Assuntos
Aneuploidia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Animais , Camundongos , Instabilidade Cromossômica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Progressão da Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...